
Journal of Modern Technology and Engineering

Vol.5, No.1, 2020, pp.5-17

JAVA LIBRARY FOR LATTICE-BASED IDENTIFICATION SCHEMES

Azhar Murzaeva, Meryem Soysaldi, Sedat Akleylek∗

Department of Computer Engineering, Ondokuz Mayıs University, Samsun, Turkey

Abstract. Traditional public key cryptosystems are based on computationally hard problems that will be solved

in polynomial time by a quantum computer. Therefore, attentions of researchers are directed on the development

of post-quantum cryptosystems and their implementations are needed. There are several examples of imple-

menting quantum secure cryptosystems such as digital signatures, key encapsulation mechanisms on different

programming languages like C, Java, Javascript. In this paper, we aim to develop a cryptographic Java library

for identification schemes that are insensibly used in our daily life. We introduce our library in details and

demonstrate implementations of the selected lattice-based identification schemes.

Keywords: post-quantum cryptography, lattice-based cryptography, identification schemes, java library.

AMS Subject Classification: 94A60, 68P25.

Corresponding author: Sedat Akleylek, Ondokuz Mayis University, Samsun, Turkey,

e-mail: sedat.akleylek@bil.omu.edu.tr

Received: 25 September 2019; Accepted: 15 January 2020; Published: 30 April 2020.

1 Introduction

Due to the Shor’s factorization algorithm for quantum computers (Shor, 1997) and NIST’s call
for a quantum-resistant algorithms’ standardization project (Chen et. al., 2016), attentions of
researchers are directed on the developments in post-quantum cryptography. Post-quantum
cryptography consists of several research areas such as code-based cryptography, hash-based
cryptography, lattice-based cryptography, multivariate cryptography and isogeny.

Each of those areas contains some hard problems that are (and become) the basis for different
cryptosystems like encryption/decryption, key exchange/encapsulation, digital signatures. In
this paper, we outline identification schemes that are the primitives of digital signatures. They
are responsible for determining parties in an interactive system, that is quite important for the
transmission of data to the trustworthy party. Modern identification schemes rely on today’s
hard problems (e.g. integer factorization (Guillou & Quisquater, 1998), elliptic curves (Schnorr,
1991)), whereas the new generation identification schemes are expected to be quantum resistant.

Identification is insensibly used in our daily life. It provides a proper access to the electron-
ically controlled services such as e-mails, e-banking and e-government systems. It is responsible
to provide a safe and easy communication between two parties by ensuring the truth of identity.
Identification is the main basis of the digital signatures that are widely used in those e-services.

Since the development of quantum computers leads to the construction of new post-quantum
cryptographic protocols, new quantum resistant identification schemes must be developed, too.
While some cryptographic libraries for post-quantum cryptosystems like digital signatures (Prest
et. al., 2017; Guneysu et. al., 2012; Lyubashevsky, 2009; Bansarkhani & Buchmann, 2014), pub-
lic key encryption and key establishment algorithms (Bos et. al., 2018, 2016) have been devel-
oped, there is no practical library for lattice-based identification schemes. Therefore, we develop

5

JOURNAL OF MODERN TECHNOLOGY AND ENGINEERING, V.5, N.1, 2020

a cryptographic Java library that will provide a convenience in implementation of identification
scheme.

1.1 Motivation and Contribution

Well-known identification schemes depend on computationally hard problems like integer factor-
ization (Guillou & Quisquater, 1998), (elliptic curve) discrete logarithm problem (Fiat & Shamir,
1987; Schnorr, 1991); however, new generation identification schemes based on quantum secure
lattice problems are being developed (Cayrel et. al., 2010; Kawachi et. al., 2008; Silva et. al.,
2011; Xagawa & Tanaka, 2009). There are some examples of implementations in literature: im-
plementation of lattice-based signature schemes (Bansarkhani & Buchmann, 2014; Lyubashevsky,
2009; Guneysu et. al., 2012), implementation of code-based zero-knowledge identification schemes
(Cayrel et. el., 2013), implementation of post-quantum digital signature algorithm (Prest et. al.,
2017), implementation of key exchange algorithm (Bos et. al., 2018), implementation of code-
based identification and signature schemes (El Yousfi Alaoui et. al., 2013) and attempt to im-
plement lattice-based schemes on constrained devices such as smart cards (Boorghany & Jalili,
2014).

In this paper, we overview some lattice-based identification schemes and develop a common
library for their implementations. For the library Java programming language is selected since
there is a big need for mobile applications and Java is the official language of Android applica-
tions. Readability and modifications of code on that selected language is easier comparing to
low-level programming languages.

During the construction of the library, we outline operations needed for the realization of
schemes selected for this study and deduce some observations that help us to make a list of
regular functions for it. We prepare a framework for the implementation of different schemes by
collecting all those functions in one module. All these steps we describe in details and then, we
introduce our developed library with its usage example by implementing several identification
schemes.

1.2 Organization

The rest content of this paper is organized as follows. Section II presents identification schemes
used for this study. Section III introduces details of developed library and demonstrates imple-
mentation of identification schemes. In addition, the comparison of those identification schemes
by obtained experimental results is given. Section IV states the conclusion and future work.

2 An Overview of Lattice-based Identification Schemes

In this section, definition of identification scheme is recalled. Structures of Silva et. al. (2011);
Cayrel et. al. (2010); Kawachi et. al. (2008) and Xagawa & Tanaka (2009) identification schemes
are explained.

An identification scheme consists of key generation and commitments’ computation steps.
This scheme contains Prover (P) and Verifier (V) parties that interact with each other through
these steps. Key Generation step generates public and secret keys (pk, sk), that are used in the
commitments’ computations. Then, Verifier (V) checks commitments by comparing them with
results of his own computations and then, either accepts or rejects the Prover.

In this study Silva et. al. (2011); Cayrel et. al. (2010); Kawachi et. al. (2008) and Xagawa
& Tanaka, (2009) identification schemes are explained and their implementations are performed.
Silva et. al. (2011) scheme is based on LWE (Learning With Errors) problem, while Cayrel et. al.
(2010) scheme is based on SIS (Short Integer Solution) problem in lattices. Kawachi et. al.
(2008) is based on SIS problem and Xagawa & Tanaka (2009) is based on NTRU key recovery
problem in lattices.

6

A. MURZAEVA et al.: JAVA LIBRARY FOR LATTICE-BASED IDENTIFICATION SCHEME

KeyGen:

A
$←− Fn×m

q , s
$←− Fmq , e

$←− Fnq ,
b = As + e,
p = (e)

Prover: Verifier:

u
$←− Fmq , r1

$←− Fnq , r2
$←− Fnq , r3

$←− Fnq ,

γ
$←− Fmq , γ ̸= 0, ∀i ∈ 1, . . . ,m,Σ

$←− Sn,

c1 ← Com(Πγ,Σ; r1)
c2 ← Com(Πγ,Σ(A(u + s)); r2)

c3 ← Com(Πγ,Σ(Au + b); r3)
paddingc1,c2,c3padding
−−−−−−−−−−−−−−−−−−→
paddingpadcpaddingpad←−−−−−−−−−−−−−−−−−− c

$←− {1, 2, 3}
If c=1:
paddingpaddingresp = (r1, r2, (u + s),Πγ,Σ)
If c=2:
paddingpaddingresp = (r2, r3,Πγ,Σ(A(u + s)),Πγ,Σ(e))
If c=3:
paddingpaddingresp = (r1, r3,Πγ,Σ, u)

paddingparesppaddingpa−−−−−−−−−−−−−−−−−−−→
If c=1:

check c1
?
= Com(Πγ,Σ, r1) and

c2
?
= Com(Πγ,Σ(A(u + s)), r2)

If c=2:

check c2
?
= Com(Πγ,Σ(A(u + s)), r2) and

c3
?
= Com(Πγ,Σ(A(u + s)) + Πγ,Σ(e)),

hw(Πγ,Σ(e))
?
= p

If c=3:

check c1
?
= Com(Πγ,Σ, r1) and

c3
?
= Com(Πγ,Σ(Au + b); r3)

Figure 1: Silva’s identification scheme

2.1 Silva’s LWE-based Identification scheme

Silva et. al. (2011) proposed a scheme based on LWE (Learning With Errors) problem in lattices.
It is a three-pass scheme. Steps of that interactive proof scheme are given in Figure 1. In the
Key Generation stage, private and public keys are generated. Later, these keys are used on
Prover and Verifier sides for computations. Prover computes and sends commitments to the
Verifier. In his turn, Verifier generates a challenge. Depending on this challenge, Prover sends
some parameters and Verifier determines the veracity of the statement.

Remark. For the implementation of this scheme’s Key Generation, Computation of commit-
ments and Verification stages, these operations are needed: matrix-vector product and addition
of vectors. Implementation of that scheme is explained in details in Section III.

2.2 CLRS Identification scheme

Cayrel et. al. (2010) proposed a scheme based on SIS (Shortest Integer Solution) problem in
lattices. It is composed of five phases as demonstrated in Figure 2. In the Key Generation
stage, private and public keys are generated. Later, these keys are used on Prover and Verifier
sides for computations. Prover computes and sends commitments to the Verifier. In his turn,
Verifier sends α. Using this α, Prover computes β and sends it to the Verifier. In its turn,
Verifier generates a challenge. Depending on this challenge, Prover sends some parameters and
Verifier determines the veracity of the statement.

Remark. For the implementation of this scheme’s Key Generation, Computation of commit-
ments and Verification stages, these operations are required: matrix-vector product, a random
permutation function, addition of vectors, matrix inversion. Implementation of that scheme is
explained in details in Section III.

7

JOURNAL OF MODERN TECHNOLOGY AND ENGINEERING, V.5, N.1, 2020

KeyGen:

x
$←− Fm2 , (x) = m/2,

A
$←− Zn×m

q ,
y ← Ax

Prover: Verifier:

u
$←− Zm

q , z
$←− Pσx,

σ
$←− Sm,

Pm×m
σ ← is a binary matrix

r0
$←− Fn2 , r1

$←− Fn2 .

c0 ← Com(σ||Au; r0)

c1 ← Com(z||Pσu; r1)
paddingpac0,c1paddingpa
−−−−−−−−−−−−−−−−−−−→
paddingpaddαpaddingpadd←−−−−−−−−−−−−−−−−−−−− α

$←− Zq
β ← Pσ(u + αx)

paddingpaddβpaddingpadd−−−−−−−−−−−−−−−−−−−−→ b
$←− {0, 1}

paddinchallenge bpaddingp←−−−−−−−−−−−−−−−−−−−−
If b=0:
paddingpaddiresp = (σ, r0)
else:
paddingpaddingresp = (z, r1)

paddingpaaresppaddingpaa−−−−−−−−−−−−−−−−−−−−→
If b=0:

check co
?
= com(σ||AP−1

σ β − αy; r0)

σ
?
∈ Sm

else:

check c1
?
= com(z||β − αz; r1)

z
?
∈ {0, 1}m

hw(z)
?
= m/2

Figure 2: Cayrel’s (CLRS) identification scheme

2.3 Kawachi’s LWE-based Identification scheme

Kawachi et. al. (2008) proposed a scheme based on SIS (Shortest Integer Solution) problem in
lattices. It is a three-pass scheme. Steps of that interactive proof scheme is given in Figure 3.
In the Key Generation stage, private and public keys are generated. Later, these keys are used
on Prover and Verifier sides for computations. Prover computes and sends commitments to the
Verifier. In his turn, Verifier generates a challenge. Depending on this challenge, Prover sends
some parameters and Verifier determines the veracity of the statement.

Remark. For the implementation of this scheme’s Key Generation, Computation of commit-
ments and Verification stages, these operations are needed: matrix-vector product and addition
of vectors. Implementation of that scheme is explained in details in Section III.

2.4 Xagawa’s NTRU-based Identification scheme

Xagawa & Tanaka (2009) proposed a scheme based on NTRU problem in lattices. It is composed
of three phases as demonstrated in Figure 4. In the Key Generation stage, private and public keys
are generated. Later, these keys are used on Prover and Verifier sides for computations. Prover
computes and sends commitments to the Verifier. In its turn, Verifier generates a challenge.
Depending on this challenge, Prover sends some parameters and Verifier determines the veracity
of the statement.

Remark. For the implementation of this scheme’s Key Generation, Computation of commit-
ments and Verification stages, these operations are required: vectors product, a random permu-
tation function and addition of vectors. Implementation of that scheme is explained in details
in Section III.

8

A. MURZAEVA et al.: JAVA LIBRARY FOR LATTICE-BASED IDENTIFICATION SCHEME

KeyGen:

x
$←− Fm2 , hw(x) = m/2,

y = Ax,A
$←− Zn×m

q ,

π is a random permutation over {1, · · · ,m}.

Prover: Verifier:

r
$←− Zm

q ,

c1 ← Com(π,Ar)
c2 ← Com(π(r))

c3 ← Com(π(x + r))
paddingc1,c2,c3padding
−−−−−−−−−−−−−−−−−−→
paddingpadcpaddingpad←−−−−−−−−−−−−−−−−−− c

$←− {1, 2, 3}
If c=1:
paddingpaddingresp = (π(x), π(r))
If c=2:
paddingpaddingresp = (π, (x + r))
If c=3:
paddingpaddingresp = (π, r)

paddingparesppaddingpa−−−−−−−−−−−−−−−−−−−→
If c=1:

check c2
?
= com(π(r)), c3

?
= com(π(r) + π(x)),

If c=2:

check c1
?
= com(π,A(r + x)− y),

c3
?
= com(π(r + x))

If c=3:

check c1
?
= com(π,Ar), c2

?
= com(π(r))

Figure 3: Kawachi’s identification scheme

KeyGen:
xh, xt − enumeration sets

y = ah
⊗

xh + at
⊗

xt

(ah, at, y) ∈ R3
q

Prover: Verifier:

ah
$←− Zn, at

$←− Zn, xh
$←− Zn2 , xt

$←− Zn2 ,

π is a random permutation over {1, · · · ,m}.

r
$←− Zmq ,

c1 ← Com(πh, πt, y)

c2 ← Com(πh(rh), πt(rt))

c3 ← Com(πh(rh + xh), πt(rt + xt))
paddingc1,c2,c3padding
−−−−−−−−−−−−−−−−−−−−→
paddingpadcpaddingpad
←−−−−−−−−−−−−−−−−−−−− c

$←− {1, 2, 3}
If c=1:
paddingpaddingresp = (πh(xh), πt(xt), πh(rh), πt(rt))
If c=2:
paddingpaddingresp = (πh, πt, rh + xh, rt + xt)
If c=3:
paddingpaddingresp = (πh, πt, rh, rt)

paddingparesppaddingpa
−−−−−−−−−−−−−−−−−−−−→

If c=1:

check c2
?
= Com(πh(rh), πt(rt)), and

c3
?
= Com(πh(rh) + πh(xh), πt(rt) + πt(rt)),

π(xh)
?
∈ enumeration set,

π(xt)
?
∈ enumeration set

If c=2:

check c1
?
= Com(πh, πt, y) and

c3
?
= Com(πh(rh + xh), πt(rt + xt))

If c=3:

check c1
?
= Com(πh, πt, y) and

c2
?
= Com(πh(rh), πt(rt))

enumeration sets: Given the set {0, ... n-1}. π is a random permutation over n and Sn is the n-dimensional permutation group, that
consists of all of the permutations over n. For example, let a∈ Rq and b ∈ Rq . π(a + b) = π(a) + π(b).

Figure 4: Xagawa’s identification scheme

3 Implementation Details and Guideline for the Library

In this section, we present the list of required operations. We introduce the framework and
general procedures for the implementation. We give the details of the developed library and
as an example of usage, implementations of few identification schemes are demonstrated. The
details of the schemes and obtained observations are also described in subsections.

9

JOURNAL OF MODERN TECHNOLOGY AND ENGINEERING, V.5, N.1, 2020

3.1 Framework for the Implementation

Depending on the computational operations needed for the implementation of the concerned
scheme, we determine the required functions/modules as in Figure 5. With such blueprints in
mind, we collect all required functions in one module. For instance, there is a knuth shuffle
function in the module, which performs the permutation of elements in a given vector. Also, in
the realization of an identification scheme, as a ”commitment function” a one way hash function
is used.

Figure 5: Implementation design of LWE-based scheme

All presented identification schemes need common operations such as matrix-vector product,
vector product, addition/subtraction of vectors and a random permutation function. Instead of
writing these functions in every step of each scheme’s implementation, calling them from one
common file provides a convenience and prevents from the code repeat.

3.2 Guideline for the Library

Traditionally, before performing an implementation, a pseudocode of the system or its flowchart
is prepared. Such a general pseudocode for an identification scheme is prepared as in Figure 6.

Following the procedures from the pseudocode and adding small modifications depending on
the properties of a scheme, it can be organized and implemented using any language in a proper
way.

3.2.1 Observations

To construct the library more efficiently, we determine the required arithmetic operations and
functions. To achieve this goal, we have the following observations:

� Silva et. al. (2011) and Kawachi et. al. (2008) schemes need a matrix-vector product and
vectors addition/subtraction operations.

10

A. MURZAEVA et al.: JAVA LIBRARY FOR LATTICE-BASED IDENTIFICATION SCHEME

function KeyGeneration:
hahaha generateParam1(); // compute parameters
hahaha generateParam2();
hahaha computeSecretKey(Param1); // compute secret key
hahaha computePublicKey(Param2); // compute public key
function P1 (Prover’s Step1):
hahaha generateParam1(); // compute parameters
hahaha generateParam2();
hahaha computeC1(); // compute commitments
hahaha computeC2();
hahaha computeC3();
function V1 (Verifier’s Step1):
hahaha generateCH(); // compute challenge
function P2 (Prover’s Step2):
hahaha sendRespond(); // send some parameters
function V2 (Verifier’s Step2):
hahaha check(); // verify a prover

Figure 6: General pseudocode of an identification scheme

� Cayrel et. al. (2010) scheme needs a sparse matrix-vector product and matrix inversion
operations.

� Xagawa & Tanaka (2009) scheme needs to compute the product of two short polynomials.

Considering the information gained from these observations, we noticed common computational
operations that can be called from one module and can be used in any scheme’s corresponding
step. Additionally, the number of prover’s and verifier’s steps (given in the pseudocode) varies
with the construction of a scheme. For instance, while Silva’s scheme contains three phases,
Cayrel’s scheme has five phases. However, most of the operations used in computations on each
of those steps are similar. Both of those schemes are lattice-based identification schemes that
are based on hard problems in lattices. Thus, we collect all these regular operations in one
common library.

The list of main regular operations in the library is as follows: scalarMultiplyVector, gen-
erateIdentityMatrix, initMatrixRandom, vectorMultiplyMatrix, transpose, hw (computes ham-
ming weight), padding, sha256, knuth shuffle, matrix invert, addVectors, subtractVectors,
multiplyVectors, randInt, com. These operations are in the idscheme lib.jar file. After adding
this file to a project, those functions can be called from the existing module (IDscheme module).

Silva’s LWE-based scheme is a 3-pass scheme and for its implementation, needed functions
are demonstrated in Figure 7. Inside of these main functions, functions from our built library
are called and used. In Figure 8, usage examples of some functions are demonstrated.

keyGeneration (n , m, q) ;
p1 () ;
int ch ;
ch = v1 () ;
Object [] r e sponse = p2 (ch) ;
v2 (ch , re sponse) ;

Figure 7: Main functions for the implementation of Silva et. al. (2011) scheme

In the piece of code given in Figure 8, the Key Generation step is presented. Required
initMatrixRandom, vectorMultiplyMatrix, addVectors and hw functions are called from the

11

JOURNAL OF MODERN TECHNOLOGY AND ENGINEERING, V.5, N.1, 2020

Figure 8: Calling some functions from IDscheme library

IDscheme library. An example for computing commitments c1, c2 and c3 in Silva’s scheme by
calling a com function is given in Figure 9.

Figure 9: Calling a commitment function from IDscheme library

keyGeneration (n , m, q) ;
p1 () ;
double alpha = v1 () ;
double [] beta = p2 (alpha) ;
int b = v2 () ;
Object [] r e sponse p3 = p3 (b) ;
v3 (b , response p3 , beta) ;

Figure 10: Main functions for the implementation of Cayrel et. al. (2010) scheme

Main functions for the implementation of Cayrel’s scheme are listed in Figure 10. Inside of
these main functions for Cayrel’s scheme, functions such as transpose, vectorMultiplyMatrix,
scalarMultiplyVector, addVectors are called from the developed library. Usage examples are
demonstrated in Figure 11.

Figure 11: Calling functions from IDscheme library for Cayrel’s challenge computation step (com-
puting β)

Cayrel’s scheme consists of five phases as illustrated in Figure 2. Differently from the previous
LWE-based scheme, this scheme needs functions called in Figure 12. In that piece of code, the
verification step is presented. These matrixInvert, transpose, multiply, vectorMultiplyMatrix,
scalarMultiplyVector and subtractVectors functions are called from the IDscheme module.

Similar to the Silva’s and Cayrel’s identification schemes, Kawachi’s scheme and Xagawa’s
schemes use the common vectorMultiplyMatrix, addVectors, subtractVectors and other func-
tions. Differently from these functions, in Xagawa’s scheme the multiplyVectors function is
needed. Those functions are called from the IDscheme module.

12

A. MURZAEVA et al.: JAVA LIBRARY FOR LATTICE-BASED IDENTIFICATION SCHEME

Figure 12: Calling functions from IDscheme library for Cayrel’s verification step

3.3 Experimental Results

Parameter set values for implementation of Cayrel’s, Silva’s, Kawachi’s and Xagawa’s iden-
tification schemes are given in Table 1. Parameter sets for the Cayrel’s scheme are recom-
mended in Cayrel et. al. (2010). Kawachi et. al. (2008) did not provide parameter values, so
the values listed in Table 1 are extracted from Cayrel et. al. (2010). Parameter set values

Table 1: System parameters for identification schemes

Parameter Cayrel’s Scheme Silva’s Scheme Kawachi’s Scheme Xagawa’s Scheme
n 512 608 512 677
m 2048 960 2048 -
q 257 1024 257 2048

Commitment length 256-bits 256-bits 256-bits 256-bits

for the Xagawa & Tanaka (2009) scheme are proposed in Hirschhorn et. al. (2009). For the
Kawachi et. al. (2008) scheme, parameter values were not given in their original work, thus,
parameters suggested for the LWE in Cheon et. al. (2016) are used. These parameter values
provide a 80-bit security level for the Cayrel’s, Kawachi’s, Xagawa’s schemes and 128-bit secu-
rity level for the Silva’s identification scheme. Implementation of those schemes is performed
on macOS environment (Mojavi version 10.14). The experimental results of Silva’s execution
is shown in Figure 13. There, results of commitments (on the Prover’s step) and results of
computed commitments (on the Verifier’s step) are printed on the screen to show that scheme
works properly as desired.

Figure 13: Output of Silva’s scheme

On the current execution (in Figure 13), as a challenge 1 is generated. Depending on this
challenge value, c1 and c3 commitments are computed and compared with c1, c3 commitments,
that were computed on Prover’s side.

Similarly, output of Cayrel’s execution is shown in Figure 14. Results of commitments (on
the Prover’s step) and results of computed commitments (on the Verifier’s step) are printed on
the screen, too. This shows that scheme works properly as desired.

13

JOURNAL OF MODERN TECHNOLOGY AND ENGINEERING, V.5, N.1, 2020

Figure 14: Output of Cayrel’s scheme

On the execution of Cayrel’s scheme (in Figure 14), as a challenge 1 is generated. Depend-
ing on this challenge value, c1 commitments is computed by Verifier and compared with c1
commitment, that was computed by Prover.

Figure 15: Output of Kawachi’s scheme

In addition to these two schemes, Kawachi et. al. (2008) and Xagawa & Tanaka (2009) 3-pass
schemes are implemented. Kawachi’s scheme is based on SIS (Short Integer Solution) problem,
likewise Cayrel’s scheme. Output of Kawachi’s scheme is given in Figure 15. Depending on the
generated challenge value 2, comparison of commitments c1 and c3 is performed.

The execution output of Xagawa’s scheme, that is based on NTRU problem, is given in
Figure 16. Generated value of challenge is 3 and depending on this, c1 and c2 commitments are
computed and compared.

Figure 16: Output of Xagawa’s scheme

The performance results of Silva et. al. (2011), Cayrel et. al. (2010), Kawachi et. al. (2008)
and Xagawa & Tanaka (2009) schemes’ execution are demonstrated in Table 2. As expected,
performance results vary depending on related hard problems of schemes. Cayrel et. al. (2010)
scheme that depends on SIS problem, where computational operations such as matrix-matrix
product, matrix-vector product and matrix inversion are needed, requires the most amount of
time for the implementation. Those used operations consist of nested loops (one loop is used

14

A. MURZAEVA et al.: JAVA LIBRARY FOR LATTICE-BASED IDENTIFICATION SCHEME

Table 2: Implementation results of identification schemes

Time (ms) Cayrel’s Scheme Silva’s Scheme Kawachi’s Scheme Xagawa’s Scheme

Key

Generation
76.185 33.114 47.013 3.508

Computation of

Commitments
437.677 38.303 49.09 25.279

Verification 80,319.459 5.023 4.158 1.37

Total 80,833.321 76.44 100.261 30.157

inside another loop) and use multiplication/addition/subtraction operations. For instance, in
matrix-matrix product operation one nested loop is needed, while in matrix inversion operation
number of nested loops is 3 (one of those loops contains 2 loops inside). Therefore, for matrix A
and B with dimensions n×m and m× p, m multiplications and m additions are required. Be-
sides, there are np elements to compute, thus, matrix-matrix product operations takes O(nmp)
time for computations. For the implementation of Xagawa & Tanaka (2009) scheme, computa-
tionally easier operations such as vectors product, a random permutation function and addition
of vectors are used. Consequently, it takes the least time. Despite the Silva et. al. (2011) and
Kawachi et. al. (2008) schemes are based on different problems, operations required for their
implementation are similar. But the number of those used operation for the implementation of
Silva et. al. (2011) is less comparing to the number of used operations for the Kawachi et. al.
(2008) scheme. Therefore, there is a small difference between their results.

Presented library and the implementation of identification schemes demonstrated in this
study are available at https://github.com/msAzhar/pqc-id schemes/.

4 Conclusion

Many quantum secure cryptosystems are being developed. With the importance of their re-
alization, in this study, we are concerned to develop a Java library for lattice-based identifi-
cation schemes. We review the main structures of Silva et. al. (2011), Cayrel et. al. (2010),
Kawachi et. al. (2008) and Xagawa & Tanaka (2009) identification schemes. We figure out the
useful functions and computational operations needed for their implementations. The obtained
list of those regular functions is applied to the library. Therefore, if one wants to implement
his/her developed identification scheme to test its performance, he/she can make it easily by
using our library regardless of the complexity of the structure of the functions. We introduce our
developed library and demonstrate implementations of identification schemes summarized during
this work. Implementation of the selected identification schemes is performed on macOS environ-
ment (Mojavi version 10.14). The obtained results of implementation show that Cayrel et. al.
(2010) identification scheme takes the most amount of time, while the Xagawa & Tanaka (2009)
scheme’ execution takes the least time. The reason is that, Cayrel et. al. (2010) identifica-
tion scheme uses matrix-matrix product, matrix-vector product and matrix inversion operations
which require more time for computations comparing to the remaining identification schemes.
As a future work, more efficient algorithms and better approaches (e.g. argument specific algo-
rithms) for the existing functions can be investigated, found and later, applied to the developed
library.

5 Acknowledgement

This research was partially supported by TUBITAK under grant no.EEEAG-117E636.

15

JOURNAL OF MODERN TECHNOLOGY AND ENGINEERING, V.5, N.1, 2020

References

Bansarkhani, R.E., Buchmann, J.A. (2014). Improvement and Efficient Implementation
of a Lattice-Based Signature Scheme, Selected Areas in Cryptography 2014, 48-67. doi:
10.1007/978-3-662-43414-7

Boorghany, A., Jalili, R. (2014). Implementation and Comparison of Lattice-based Identification
Protocols on Smart Cards and Microcontrollers, Cryptology ePrint Archive, Report 2014/078,
https://eprint.iacr.org/2014/078

Bos, J., Costello, C., Ducas, L., Mironov, I., Naehrig, M., Nikolaenko, V., Raghunathan,
A., Stebila, D. (2016). Frodo: Take off the ring! Practical, quantum-secure key ex-
change from LWE, ACM Conference on Computer and Communications Security (CCS),
doi:10.1145/2976749.2978425, eprint: http://eprint.iacr.org/2016/659.

Bos, J., Ducas, L., Kiltz, E., Lepoint, T., Lyubashevsky, V., Schanck, J.M., Schwabe, P., Seiler,
G., Stehlé D. (2018). CRYSTALS – Kyber: a CCA-secure module-lattice-based KEM, IEEE
European Symposium on Security and Privacy, doi:10.1109/EuroSP.2018.00032

Cayrel, P.L., Lindner, R., Ruckert, M., & Silva R. (2010). Improved Zero-knowledge identifica-
tion with lattices, J. Tatra Mountains Mathematical Publications, 53, 1-17.

Cayrel, P.L., Yousfi Alaoui, S.M.E., Gunther, F., Hoffmann, G., & Rother, H. (2013). Efficient
implementation of code-based identification schemes, Security Engineering and Intelligence
Informatics. CD-ARES 2013. Lecture Notes in Computer Science, Springer, Berlin, Heidel-
berg, 8128, 122-136.

Chen, L., Jordan, S., Liu, Y.K. et al. (2016). Report on post-quantum cryptography, National
Institute of Standards and Technology.

Cheon, J.H., Kim, D., Lee, J., & Song Y. (2016). Lizard: Cut off the Tail! Practical Post-
Quantum Public-Key Encryption from LWE and LWR. Cryptology ePrint Archive Report
2016/1126.

El Yousfi Alaoui, S.M., Cayrel, P.L., El Bansarkhani, R., Hoffmann, G. (2013). Code-Based
Identification and Signature Schemes in Software. Security Engineering and Intelligence In-
formatics. CD-ARES 2013. Lecture Notes in Computer Science, Springer, Berlin, Heidelberg
8128.

Fiat, A., Shamir, A. (1986, August). How to prove yourself: Practical solutions to identifica-
tion and signature problems. In Conference on the Theory and Application of Cryptographic
Techniques (pp. 186-194). Springer, Berlin, Heidelberg.

Guillou, L., Quisquater, J.J. (1988). A “paradoxical” identity-based signature scheme resulting
from zero-knowledge. In Conference on the Theory and Application of Cryptography (pp. 216-
231). Springer, New York, NY.

Güneysu, T., Lyubashevsky, V., & Pöppelmann, T. (2012, September). Practical lattice-based
cryptography: A signature scheme for embedded systems. In International Workshop on Cryp-
tographic Hardware and Embedded Systems (pp. 530-547). Springer, Berlin, Heidelberg.

Hirschhorn, P.S., Hoffstein, J., Howgrave-Graham, N., & Whyte, W. (2009, June). Choos-
ing NTRUEncrypt parameters in light of combined lattice reduction and MITM approaches.
In International Conference on Applied Cryptography and Network Security (pp. 437-455).
Springer, Berlin, Heidelberg.

16

A. MURZAEVA et al.: JAVA LIBRARY FOR LATTICE-BASED IDENTIFICATION SCHEME

Kawachi, A., Tanaka, K., & Xagawa, K. (2008). Concurrently Secure Identification Schemes
Based on the Worst-Case Hardness of Lattice Problems, J. Advances in Cryptology - ASI-
ACRYPT 2008, 372–389.

Lyubashevsky, V. (2009). Fiat-Shamir With Aborts: Applications to lattice and factoring-based
signatures, Advances in Cryptology –ASIACRYPT 2009, Lecture Notes in Computer Science;
Springer Berlin Heidelberg, 598-616.

Menezes, J., Oorschot, P.C., Vanstone S.A. (1996). Handbook of Applied Cryptography,
http://www.cacr.math.uwaterloo.ca/hac/

Hoffstein J., Pipher J., & Silverman J.H. (1998). NTRU: A ring-based public key cryptosystem.
Algorithmic Number Theory; Lecture Notes in Computer Science, Springer, Berlin, Heidelberg,
1423.

Prest T., Fouque P.A., Hoffstein J., Kirchner P., Lyubashevsky V., Pornin T., Ricosset T.,
Seiler G., Whyte W. & Zhang Z. (2017). Falcon. Technical report, National Institute of Stan-
dards and Technology, https://csrc.nist.gov/Projects/Post-Quantum-Cryptography/ round-2-
submissions

Schnorr, C.P. (1991). Efficient signature generation by smart cards. Journal of Cryptology,
4(3),161-174.

Shor, P.W. (1997). Polynomial-time algorithms for prime factorization and discrete logarithms
on a quantum computer, SIAM J Comput., 26(5), 1484-1509.

Silva, R., Campello, A. & Dahab R. (2011). LWE-based identification schemes,CoRR,
abs/1109.0631.

Xagawa K., Tanaka, K. (2009). Zero-Knowledge Protocols for NTRU: Application to Identifica-
tion and Proof of Plaintext Knowledge, Lecture Notes in Computer Science, 198-213.

17

